Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(4-Chlorophenyl)chromen-4-one

Shailja Singh, ${ }^{\text {a }}$ Manavendra K. Singh, ${ }^{\text {b }}$ Alka Agarwal ${ }^{\text {b }}$ and Satish K. Awasthi ${ }^{\mathbf{a}^{*}}$

${ }^{\text {a }}$ Chemical Biology Laboratory, Department of Chemistry, University of Delhi 110 007, India, and ${ }^{\mathbf{b}}$ Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225001 UP, India
Correspondence e-mail: awasthisatish@yahoo.com

Received 16 August 2011; accepted 21 October 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.049 ; w R$ factor $=0.119 ;$ data-to-parameter ratio $=13.8$.

The title compound, $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{2}$, is a synthetic flavonoid obtained by the cyclization of 3-(4-chlorophenyl)-1-(2-hy-droxyphenyl)prop-2-en-1-one. The 4-chlorophenyl ring is twisted at an angle of 11.54° with respect to the chromen-4one skeleton. In the crystal, pairs of molecules are interconnected by weak $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions [3.3089 (10) Å] forming dimmers which are further peripherally connected through intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general features and crystal structures of flavanoids, see: Tim Cushnie \& Lamb (2005); Wera et al. (2011). For crystal structures of small molecules, see: Singh, Agarwal \& Awasthi (2011); Singh, Singh et al. (2011). For the synthesis, see: Migrdichian (1957); Awasthi et al. (2009); Shah et al. (1955). For intermolecular interactions and bond lengths and angles, see: Reddy et al. (2006); Wang et al. (2010); Desiraju \& Steiner (1999); Waller et al. (2003); Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{2}$
$M_{r}=256.67$
Monoclinic, C2/c
$a=22.1564$ (16) \AA
$b=3.8745$ (2) A
$c=26.7728$ (18) \AA
$\beta=95.524(6)^{\circ}$

Data collection

Oxford Xcalibur Eos diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.938, T_{\text {max }}=0.941$
8152 measured reflections 2249 independent reflections 1910 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$
Standard reflections: 0

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049 \quad 163$ parameters
$w R\left(F^{2}\right)=0.119 \quad$ H-atom parameters constrained
$S=1.10$
2249 reflections
$\Delta \rho_{\max }=0.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.64	$3.345(3)$	$134(1)$
Symmetry code: (i) $-x+1, y-1,-z+\frac{1}{2}$.				

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

SKA is grateful to the Department of Science and Technology (Scheme No. SR/SO BB-65/2003) and the University of Delhi, India, for financial assistance. The authors are very grateful to the University Sophisticated Instrument Center (USIC), University of Delhi, India, for providing the singlecrystal X-ray diffractometer facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2023).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. \& Bhasin, V. K. (2009). Med. Chem. Res. 18, 407-420.

Desiraju, G. R. \& Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Migrdichian, V. (1957). Organic Synthesis, Vol. 1, pp. 171-173. New York: Reinhold Publishing.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. \& Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.
Shah, D. N., Parikh, S. K. \& Shah, N. M. (1955). J. Am. Chem. Soc. 77, $2223-$ 2224.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, M. K., Agarwal, A. \& Awasthi, S. K. (2011). Acta Cryst. E67, o1137.
Singh, S., Singh, M. K., Agarwal, A., Hussain, F. \& Awasthi, S. K. (2011). Acta Cryst. E67, o1616-o1617.
Tim Cushnie, T. P. \& Lamb, A. J. (2005). Int. J. Antimicrob. Agents, 26, 343356.

Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. \& Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.

Wang, Y., Wan, C.-Q., Zheng, T. \& Cao, S.-L. (2010). Acta Cryst. E66, o2858.
Wera, M., Serdiuk, I. E., Roshal, A. D. \& Błażejowski, J. (2011). Acta Cryst. E67, 0440.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

2-(4-Chlorophenyl)chromen-4-one

S. Singh, M. K. Singh, A. Agarwal and S. K. Awasthi

Comment

The term flavonoid generally includes a group of natural products containing a C6-C3-C6 carbon skeleton or more specifically phenylbenzopyran functionality in the molecule. Flavones (flavus $=$ yellow), a class of the flavonoids mainly found in cereals and herbs. Flavanoids exhibit a wide range of biological activities such as antibacterial, anti-inflammatory, antioxidants, antifungal, antitumour and antimalarial (Tim Cushnie \& Lamb 2005). Recently, few flavanoids have also been characterized in solid state (Wera et al., 2011). Continuing our ongoing work on antimalarials (Awasthi et al., 2009) and crystal structure of small molecules (Singh, Agarwal \& Awasthi, 2011; Singh, Singh et al., 2011), here we wish to report the crystal structure of 2-(4-chlorophenyl)chromen-4-one.

In the title compound (Fig. 1), the bond lengths and bond angles are usual and are comparable with the analogues structure of 2-phenyl-4H-chromen-4-one (flavone) reported earlier (Allen et al., 1987; Waller et al., 2003). The 4-chlorophenyl ring in the molecule is twisted at an angle of 11.54° relative to the chromen-4-one skeleton confirming nearly planner structure. The centroid-centroid distance between two parallel chromone ring in the molecule is $3.87 \AA$. Further, it is evident from the crystal packing structure (Fig. 2) that 8 molecules are present in a unit cell and adjacent chromone units are parallel in a given column, thus forming a herringbone type pattern. Moreover,crystal packing in the molecule is stabilized by weaker intermolecular hydrogen bonding $\mathrm{C} 11-\mathrm{H} 11-\mathrm{O} 2[\mathrm{D}=3.34(3) \AA]$ which is very well supported by earlier findings (Desiraju \& Steiner, 1999). Further, weak interaction among atoms in molecule such as $\mathrm{Cl} 1-\mathrm{Cl} 1(x,-1+y, 1 / 2-z)[3.30$ $\AA]$ (Reddy et al.,2006) and C8-H8-H8-C8 [2.26 $\AA]$ (Wang et al., 2010) are also responsible for stability in the crystal packing. Further, intermolecular $\mathrm{Cl} 1-\mathrm{Cl} 1$ short interaction forms a dimeric unit which are further peripherically links to six other molecules through $\mathrm{C}-\mathrm{H}-\mathrm{O}$ and $\mathrm{C}-\mathrm{H}-\mathrm{H}-\mathrm{C}$ interactions.

Experimental

The synthesis of the title compound was carried out in two steps according to the published procedure. (Migrdichian 1957; Awasthi et al., 2009). In the first step, an aqueous solution of sodium hydroxide ($10 \% \mathrm{w} / \mathrm{v}, 10 \mathrm{ml}$) was added to a solution of 2-hydroxyacetophenone $(1.77 \mathrm{~g} \mathrm{~m}, 10 \mathrm{mmol})$ and 4-chlorobenzaldehyde $(1.73 \mathrm{~g} \mathrm{~m}, 10 \mathrm{mmol})$ in minimum amount of methanol ($3-5 \mathrm{ml}$) at ice cooled flask. The reaction mixture was allowed to draw closer to room temperature and stirred for $18-20 \mathrm{~h}$ yielded a yellow solid. The completion of the reaction was monitored by thin layer chromatography. After completion of the reaction, the mixture was neutralized with 10% hydrochloric acid in water. The compound was characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FT-IR and EI-MS.

In second step, the cyclization was carried out according to published procedure (Shah et al., 1955). Briefly, 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)propenone ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) \& $\mathrm{SeO}_{2}(39 \mathrm{mg}, 0.35 \mathrm{mmol})$ were added to dry amyl alcohol (30 ml) and the mixture was heated in an oil bath at $140-150{ }^{\circ} \mathrm{C}$ so that the entire compound was completely dissolved in the solvent. The reaction mixture was refluxed for 12 h and completion of the reaction was monitored by TLC. The reaction mixture was then filtered and dried in vacuum and purified by silica gel column using (Pet. ether: EtOAc, 2:3)

supplementary materials

as eluent. The recrystalliation of an isolated compound from PE/ethylacetate to afford 2-(4-chlorophenyl)chromen-4-one $(10 \mathrm{mg}, 20.1 \%)$ as white solid, m.p $177-178^{\circ} \mathrm{C} . R_{\mathrm{f}} 0.6$ (PE; EtOAc, 2:3). FT-IR $v_{\max }(\mathrm{KBr}) \mathrm{cm}^{-1}: 1651(\mathrm{C}=\mathrm{O}), 1606$ and $1510\left(\mathrm{C}=\mathrm{C}\right.$ aromatic), $1263(\mathrm{C}-\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{Mz}, \mathrm{CDCl}_{3}$) p.p.m.: $\delta 6.63(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$, pyrone ring), $\delta 7.32-7.48(4 H$, m, Ar-H, H'-5, H'-6, H'-7, H'-8), $7.20(2 H, d d, ~ J=2.4 ~ H z, ~ H '-5, ~ H '-3), ~ 7.28(2 H, ~ d d, ~ J=2.1 ~ H z, ~ H '-2, ~ H '-6), ~{ }^{13} C$ NMR (300 $\mathrm{Mz}, \mathrm{CDCl}_{3}$) ppm: EI-MS: m/z $255[M+]$.

For crystallization 5 mg of compound dissolved in 5 ml mixture of Petroleum ether/ethylacetate (80:20) and left for several days at ambient temperature which yielded fine needle shape crystals.

Refinement

All H atoms were located from Fourier map (range of $\mathrm{C}-\mathrm{H}=0.93 \AA$) allowed to refine freely.

Figures

Fig. 1. ORTEP diagram of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; green: Cl; white: H.

2-(4-Chlorophenyl)chromen-4-one

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{2}$
$M_{r}=256.67$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=22.1564$ (16) \AA
$b=3.8745$ (2) \AA
$c=26.7728(18) \AA$
$\beta=95.524$ (6) ${ }^{\circ}$
$V=2287.6(3) \AA^{3}$
$Z=8$
$F(000)=528$
$D_{\mathrm{x}}=1.490 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3949 reflections
$\theta=3.1-32.6^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.40 \times 0.39 \times 0.38 \mathrm{~mm}$

Data collection

Oxford Xcalibur Eos
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\text {min }}=0.938, T_{\text {max }}=0.941$
8152 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.119$
$S=1.10$
2249 reflections
163 parameters
0 restraints

2249 independent reflections
1910 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-26 \rightarrow 26$
$k=-4 \rightarrow 4$
$l=-33 \rightarrow 33$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0483 P)^{2}+1.836 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.009$
$\Delta \rho_{\max }=0.20$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$0.31934(3)$	$0.85487(18)$	$0.02358(2)$	$0.0570(2)$
C9	$0.53822(9)$	$1.4266(6)$	$0.14239(7)$	$0.0337(5)$
C6	$0.64493(9)$	$1.7175(6)$	$0.18541(7)$	$0.0354(5)$
C10	$0.48486(9)$	$1.2780(6)$	$0.11311(7)$	$0.0337(5)$
C1	$0.63679(9)$	$1.6341(5)$	$0.13486(7)$	$0.0339(5)$
C13	$0.38335(9)$	$1.0144(6)$	$0.05827(8)$	$0.0397(5)$

C15	$0.48053(10)$	$1.2743(6)$	$0.06106(8)$	$0.0400(5)$
H15	0.5123	1.3606	0.0445	0.048^{*}
C8	$0.54262(10)$	$1.5012(7)$	$0.19128(8)$	$0.0461(6)$
H8	0.5095	1.4573	0.2092	0.055^{*}
C5	$0.70028(10)$	$1.8653(6)$	$0.20370(8)$	$0.0428(5)$
H5	0.7069	1.9248	0.2374	0.051^{*}
C2	$0.68118(10)$	$1.6940(6)$	$0.10315(8)$	$0.0431(5)$
H2	0.6748	1.6370	0.0693	0.052^{*}
C14	$0.42994(10)$	$1.1448(6)$	$0.03366(8)$	$0.0436(6)$
H14	0.4273	1.1455	-0.0012	0.052^{*}
C11	$0.43729(10)$	$1.1410(6)$	$0.13715(8)$	$0.0416(5)$
H11	0.4397	1.1385	0.1720	0.050^{*}
C12	$0.38674(10)$	$1.0092(6)$	$0.10974(8)$	$0.0431(5)$
H12	0.3551	0.9172	0.1260	0.052^{*}
C7	$0.59653(11)$	$1.6468(6)$	$0.21751(8)$	$0.0445(6)$
O2	$0.60167(9)$	$1.7078(6)$	$0.26277(6)$	$0.0690(6)$
C3	$0.73488(10)$	$1.8388(6)$	$0.12232(9)$	$0.0472(6)$
H3	0.7651	1.8809	0.1013	0.057^{*}
C4	$0.74463(11)$	$1.9233(6)$	$0.17286(9)$	$0.0475(6)$
H4	0.7814	2.0193	0.1856	0.057^{*}
O1	$0.58414(6)$	$1.4868(4)$	$0.11337(5)$	$0.0382(4)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0454(4)$	$0.0656(5)$	$0.0582(4)$	$-0.0157(3)$	$-0.0049(3)$	$-0.0043(3)$
C9	$0.0323(10)$	$0.0380(12)$	$0.0317(10)$	$0.0045(9)$	$0.0076(8)$	$0.0045(9)$
C6	$0.0365(11)$	$0.0363(12)$	$0.0332(11)$	$0.0054(9)$	$0.0013(9)$	$0.0023(9)$
C10	$0.0323(11)$	$0.0353(11)$	$0.0337(10)$	$0.0045(9)$	$0.0033(8)$	$0.0035(9)$
C1	$0.0319(10)$	$0.0358(12)$	$0.0336(10)$	$0.0005(9)$	$0.0011(8)$	$0.0027(9)$
C13	$0.0326(11)$	$0.0390(12)$	$0.0466(12)$	$-0.0030(10)$	$-0.0011(9)$	$-0.0010(10)$
C15	$0.0375(11)$	$0.0492(13)$	$0.0342(11)$	$-0.0041(10)$	$0.0082(9)$	$0.0025(10)$
C8	$0.0389(12)$	$0.0672(16)$	$0.0331(11)$	$-0.0059(11)$	$0.0085(9)$	$0.0006(11)$
C5	$0.0437(12)$	$0.0432(13)$	$0.0398(12)$	$0.0003(11)$	$-0.0045(10)$	$-0.0018(10)$
C2	$0.0408(12)$	$0.0529(14)$	$0.0361(11)$	$-0.0015(11)$	$0.0060(9)$	$-0.0002(10)$
C14	$0.0444(13)$	$0.0533(15)$	$0.0331(11)$	$-0.0050(11)$	$0.0038(10)$	$-0.0002(10)$
C11	$0.0393(12)$	$0.0529(14)$	$0.0334(11)$	$-0.0009(11)$	$0.0076(9)$	$0.0040(10)$
C12	$0.0347(11)$	$0.0496(14)$	$0.0461(12)$	$-0.0054(10)$	$0.0103(10)$	$0.0052(11)$
C7	$0.0451(13)$	$0.0563(15)$	$0.0321(11)$	$0.0007(12)$	$0.0038(9)$	$-0.0031(10)$
O2	$0.0648(12)$	$0.1114(17)$	$0.0314(9)$	$-0.0159(11)$	$0.0068(8)$	$-0.0149(10)$
C3	$0.0379(12)$	$0.0508(15)$	$0.0539(14)$	$-0.0036(11)$	$0.0105(10)$	$0.0053(12)$
C4	$0.0382(12)$	$0.0450(14)$	$0.0574(14)$	$-0.0045(11)$	$-0.0045(11)$	$0.0018(12)$
O1	$0.0326(7)$	$0.0541(10)$	$0.0282(7)$	$-0.0041(7)$	$0.0045(6)$	$-0.0028(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 13$	$1.733(2)$
$\mathrm{C} 9-\mathrm{C} 8$	$1.335(3)$
$\mathrm{C} 9-\mathrm{O} 1$	$1.358(2)$

$\mathrm{C} 8-\mathrm{C} 7$	$1.441(3)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 5-\mathrm{C} 4$	$1.362(3)$

sup-4

supplementary materials

C9-C10	1.471 (3)
C6-C1	1.386 (3)
C6-C5	1.399 (3)
C6-C7	1.463 (3)
C10-C15	1.388 (3)
C10-C11	1.392 (3)
C1-O1	1.374 (2)
C1-C2	1.379 (3)
C13-C14	1.373 (3)
C13-C12	1.373 (3)
C15-C14	1.374 (3)
C15-H15	0.9300
C8-C9-O1	122.4 (2)
C8-C9-C10	125.9 (2)
O1-C9-C10	111.72 (17)
C1-C6-C5	117.7 (2)
C1-C6-C7	119.74 (19)
C5-C6-C7	122.57 (19)
C15-C10-C11	118.6 (2)
C15-C10-C9	120.89 (19)
C11-C10-C9	120.54 (18)
O1-C1-C2	116.05 (18)
O1-C1-C6	122.07 (18)
C2- $21-\mathrm{C} 6$	121.9 (2)
C14-C13-C12	121.1 (2)
C14-C13-Cl1	119.24 (17)
C12-C13-Cl1	119.70 (17)
C14-C15-C10	120.9 (2)
C14-C15-H15	119.5
C10-C15-H15	119.5
C9-C8-C7	122.8 (2)
C9-C8-H8	118.6
C7-C8-H8	118.6
C4-C5-C6	121.0 (2)
C4-C5-H5	119.5
C8-C9-C10-C15	167.0 (2)
O1-C9-C10-C15	-12.2 (3)
C8-C9-C10-C11	-12.3 (4)
O1-C9-C10-C11	168.48 (19)
C5-C6-C1-O1	179.74 (19)
C7-C6-C1-O1	0.3 (3)
C5-C6-C1-C2	-0.2 (3)
C7-C6-C1-C2	-179.6 (2)
C11-C10-C15-C14	1.3 (4)
C9-C10-C15-C14	-178.1 (2)
O1-C9-C8-C7	-0.9 (4)
C10-C9-C8-C7	180.0 (2)
C1-C6-C5-C4	-0.3 (3)

C5-H5	0.9300
C2-C3	1.370 (3)
C2-H2	0.9300
C14-H14	0.9300
C11-C12	1.377 (3)
C11-H11	0.9300
C12-H12	0.9300
C7-O2	1.229 (3)
C3-C4	1.389 (3)
C3-H3	0.9300
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
C6-C5-H5	119.5
C3-C2-C1	118.9 (2)
C3-C2-H2	120.5
C1-C2-H2	120.5
C13-C14-C15	119.4 (2)
C13-C14-H14	120.3
C15-C14-H14	120.3
C12-C11-C10	120.5 (2)
C12-C11-H11	119.7
C10-C11-H11	119.7
C13-C12-C11	119.5 (2)
C13-C12-H12	120.2
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.2
O2-C7-C8	123.3 (2)
O2-C7-C6	122.7 (2)
C8-C7-C6	114.01 (18)
C2-C3-C4	120.6 (2)
C2-C3-H3	119.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.7
C5-C4-C3	119.9 (2)
C5-C4-H4	120.1
C3-C4-H4	120.1
C9-O1-C1	118.96 (15)
C15-C10-C11-C12	-0.9 (3)
C9-C10-C11-C12	178.5 (2)
C14-C13-C12-C11	0.9 (4)
C11-C13-C12-C11	-179.02 (18)
C10-C11-C12-C13	-0.2 (4)
C9-C8-C7-O2	-178.0 (3)
C9-C8-C7-C6	2.2 (4)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 2$	178.3 (2)
C5-C6-C7-O2	-1.1 (4)
C1-C6-C7-C8	-1.9 (3)
C5-C6-C7-C8	178.7 (2)
C1-C2-C3-C4	0.2 (4)
C6-C5-C4-C3	0.7 (4)

supplementary materials

$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$179.1(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.7(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.3(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-0.5(4)$
$\mathrm{C} 11-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$179.43(18)$
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$-0.6(4)$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.7(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1$	$-0.9(3)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1$	$178.32(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	$-178.86(19)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	$1.2(3)$

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.64	$3.345(3)$	$134 .(1)$

Symmetry codes: (i) $-x+1, y-1,-z+1 / 2$.

Fig. 1

Fig. 2

